Tipo 1: Teste t para amostras independentes:
Quando você precisa comparar as médias de duas amostras independentes, esse é o teste perfeito.
Uma suposição importante é que as observações, em cada amostra, sejam independentes e que ambas as amostras sigam uma distribuição normal. A igualdade das variâncias entre as amostras não é uma suposição estrita. Em casos em que as variâncias são muito diferentes, é recomendado utilizar o teste t sem a suposição de variâncias iguais, conhecido como teste t Welch.
Tipo 2: Teste t pareado:
O teste t pareado é utilizado quando você deseja comparar as médias de duas amostras dependentes. Por exemplo, em situações em que você realiza medições duas vezes na mesma amostra, como antes e depois de uma intervenção. Esse teste permite avaliar se houve uma diferença significativa após a intervenção, revelando o impacto real das mudanças.
É crucial que as diferenças entre as observações pareadas sejam distribuídas de forma aproximadamente normal. Além disso, as diferenças devem ser independentes umas das outras. Esses pressupostos garantem a validade dos resultados do teste t pareado.
Tipo 3: Teste t de uma amostra:
O teste t de uma amostra é uma ferramenta útil quando você deseja comparar a média de uma amostra com um valor de referência ou uma média populacional conhecida.
É necessário que a amostra siga uma distribuição normal e que as observações sejam independentes entre si. Esses pressupostos são essenciais para garantir a confiabilidade dos resultados.
✨ Os testes t são poderosas ferramentas estatísticas que nos ajudam a tirar conclusões baseadas em evidências. Ao escolher o teste apropriado para o seu estudo, lembre-se de considerar os pressupostos necessários para cada tipo de teste. Isso garantirá a validade dos resultados obtidos e fortalecerá suas conclusões.